Continuous Version of Filippov’s Theorem for a Sturm-liouville Type Differential Inclusion

نویسنده

  • AURELIAN CERNEA
چکیده

Using Bressan-Colombo results, concerning the existence of continuous selections of lower semicontinuous multifunctions with decomposable values, we prove a continuous version of Filippov’s theorem for a SturmLiuoville differential inclusion. This result allows to obtain a continuous selection of the solution set of the problem considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points

In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.

متن کامل

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

  Abstract.   The Sturm-Liouville boundary value problem of the multi-order fractional differential equation  is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.

متن کامل

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

Structure of Solutions Sets and a Continuous Version of Filippov’s Theorem for First Order Impulsive Differential Inclusions with Periodic Conditions

In this paper, the authors consider the first-order nonresonance impulsive differential inclusion with periodic conditions y′(t)− λy(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, y(t+k )− y(t − k ) = Ik(y(t − k )), k = 1, 2, . . . ,m, y(0) = y(b), where J = [0, b] and F : J × R → P(R) is a set-valued map. The functions Ik characterize the jump of the solutions at impulse points tk (k = 1, 2, ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008