Continuous Version of Filippov’s Theorem for a Sturm-liouville Type Differential Inclusion
نویسنده
چکیده
Using Bressan-Colombo results, concerning the existence of continuous selections of lower semicontinuous multifunctions with decomposable values, we prove a continuous version of Filippov’s theorem for a SturmLiuoville differential inclusion. This result allows to obtain a continuous selection of the solution set of the problem considered.
منابع مشابه
The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
Abstract. The Sturm-Liouville boundary value problem of the multi-order fractional differential equation is studied. Results on the existence of solutions are established. The analysis relies on a weighted function space and a fixed point theorem. An example is given to illustrate the efficiency of the main theorems.
متن کاملOn a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملStudies on Sturm-Liouville boundary value problems for multi-term fractional differential equations
...
متن کاملStructure of Solutions Sets and a Continuous Version of Filippov’s Theorem for First Order Impulsive Differential Inclusions with Periodic Conditions
In this paper, the authors consider the first-order nonresonance impulsive differential inclusion with periodic conditions y′(t)− λy(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, y(t+k )− y(t − k ) = Ik(y(t − k )), k = 1, 2, . . . ,m, y(0) = y(b), where J = [0, b] and F : J × R → P(R) is a set-valued map. The functions Ik characterize the jump of the solutions at impulse points tk (k = 1, 2, ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008